十六进制字符(十六进制字符都有哪些)

0x16进制

十六进制字符(十六进制字符都有哪些)

现实生活中,我们最常见的数为十进制数,比如交通信号灯上的数字,电子表上的时间等。如果在这些地方你看到0xAA,就会感觉很奇怪。但是这样的数代表什么意思,为什么会有这样的数,它与十进制的数有什么关系以及它都有哪些应用呢。下面将带你了解一下十六进制数的秘密。

目录

1 概念 2 意义 3 相关换算 4 表达方法5 使用 6 互相转换

1概念

以0x开始的数据表示16进制,计算机中每位的权为16,即(16进制)10 = (10进制)1×16

备注:这里的0是数字0,不是字母O!

2意义

编程中,我们常用的还是10进制……毕竟C/C 是高级语言。

比如:

int a = 100,b = 99;

不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。

但,二进制数太长了。比如int 类型占用4个字节,32位。比如100,用int类型的二进制数表达将是:

0000 0000 0000 0000 0000 0000 0110 0100

面对这么长的数进行思考或操作,没有人会喜欢。因此,C,C 没有提供在代码直接写二进制数的方法。

用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。不过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢?

2、8、16,分别是2的1次方,3次方,4次方。这一点使得三种进制之间可以非常直接地互相转换。8进制或16进制缩短了二进制数,但保持了二进制数的表达特点。在下面的关于进制转换的课程中,你可以发现这一点。

3相关换算

2进制,用两个阿拉伯数字:0、1;

8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;

10进制,用十个阿拉伯数字:0到9;

16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?

16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这六个字母来分别表示10,11,12,13,14,15。字母不区分大小写。

十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……

所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。

假设有一个十六进数 2AF5, 那么如何换算成10进制呢?

用竖式计算:

2AF5换算成10进制:

第0位: 5 * 16^0 = 5

第1位: F * 16^1 = 240

第2位: A * 16^2 = 2560

第3位: 2 * 16^3 = 8192

————————————-

10997

直接计算就是:

5 * 16^0 F * 16^1 A * 16^2 2 * 16^3 = 10997

(别忘了,在上面的计算中,A表示10,而F表示15)

4表达方法

如果不使用特殊的书写形式,16进制数也会和10进制相混。随便一个数:9876,就看不出它是16进制或10进制。

C,C 规定,16进制数必须以 0x开头。比如 0x1表示一个16进制数。而1则表示一个十进制。另外如:0xff,0xFF,0X102A,等等。其中的x也不区分大小写。(注意:0x中的0是数字0,而不是字母O)

以下是一些用法示例:

int a = 0x100F;

int b = 0x70 a;

至此,我们学完了所有进制:10 进制,8进制,16进制数的表达方式。最后一点很重要,C/C 中,10进制数有正负之分,比如12表示正12,而-12表示负12,;但8进制和16进制只能用来表示无符号的正整数,如果你在代码中里:-078,或者写:-0xF2,C,C 并不把它当成一个负数。

5使用

转义符也可以接一个16进制数来表示一个字符。如在6.2.4小节中说的 ‘?’ 字符,可以有以下表达方式:

‘?’ //直接输入字符

’77’ //用八进制,此时可以省略开头的0

‘0x3F’ //用十六进制

同样,这一小节只用于了解。除了空字符用八进制数 ‘0’ 表示以外,我们很少用后两种方法表示一个字符。

6互相转换

二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C 程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。

我们也一样,只要学完这一小节,就能做到。

首先我们来看一个二进制数:1111,它是多少呢?

你可能还要这样计算:1 * 2 ^0 1 * 2^1 1 * 2^2 1 * 2^3 = 1 * 1 1 * 2 1 * 4 1 * 8 = 15。

然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为2= 8,然后依次是 2 = 4,=2, 2 = 1。

记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。

下面列出四位二进制数 xxxx 所有可能的值(中间略过部分)

仅4位的2进制数 快速计算方法 十进制值 十六进值

1111 = 8 4 2 1 = 15 F

1110 = 8 4 2 0 = 14 E

1101 = 8 4 0 1 = 13 D

1100 = 8 4 0 0 = 12 C

1011 = 8 0 2 1 = 11 B

1010 = 8 0 2 0 = 10 A

1001 = 8 0 0 1 = 9 9

….

0001 = 0 0 0 1 = 1 1

0000 = 0 0 0 0 = 0 0

二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。

如(上行为二制数,下面为对应的十六进制):

1111 1101 , 1010 0101 , 1001 1011

F D , A 5 , 9 B

反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢?

先转换F:

看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8 4 2 1,所以四位全为1 :1111。

接着转换 D:

看到D,知道它是13,13如何用8421凑呢?应该是:8 4 1,即:1101。

所以,FD转换为二进制数,为: 1111 1101

由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。

比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数:

被除数

计算过程

余数

1234

1234/16

77

2

77

77/16

4

13 (D)

4

4/16

0

4

结果16进制为: 0x4D2

然后我们可直接写出0x4D2的二进制形式:0100 1101 0010。

其中对映关系为:

0100 — 4

1101 — D

0010 — 2

同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。

下面举例一个int类型的二进制数:

01101101 11100101 10101111 00011011

我们按四位一组转换为16进制: 6D E5 AF 1B

本站部分内容由互联网用户自发贡献,该文观点仅代表作者本人,本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如发现本站有涉嫌抄袭侵权/违法违规等内容,请联系我们举报!一经查实,本站将立刻删除。